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Abstract— This research aimed at determination of effectiveness of inclined stiffeners of thin cylindrical shell under uniform bending. The
method of solution was carried out by the use of nonlinear large deflection theory and the effect of initial imperfections in the strain-
displacement equations was considered. The Ritz method was used to determine the buckling stress parameter of the shell. Numerical
examples were carried by varying the angle of inclination of the stiffeners at different imperfect ratios with other properties like: flexural rigidity
and torsional rigidity of the stiffeners, deflection parameters, internal pressure and radius of curvature of the shell being kept constant. The
results showed that 100 inclined stiffeners are the most effective with its maximum critical buckling stress at imperfect ratio of 0.5. While 450

inclined stiffener is the least effective with its least critical buckling stress at imperfect ratio of 0.1. With reference to the results obtained in
this research, engineers designing cylindrical shell structures with the aim of providing resistance to buckling would be able to select suitable
inclined stiffeners for the structure under uniform bending.

Index Terms— Thin cylindrical shell, buckling, stress, uniform bending, the Ritz, imperfect ratio, inclined stiffeners, effectiveness.
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1  INTRODUCTION
he The design of cylindrical shell structures depends on a
large number of factors, namely the economic aspects, ma-
terial availability, response of each structure of the system

to static and dynamic loads, temperature effects and so on. The
designer is interested in arriving at an optimum design taking
into considerations all these factors [1]. The analysis of the
structure is normally concerned with the determination of be-
haviour of the structure or the elements of the structure under
the action of external loads. It explains the response of the struc-
ture when subjected to external loads and /or temperature
changes. In other words, if the external loads are known, the
deformation pattern and internal stress distribution in the
structure can be determined. Also, the nature of equilibrium of
the structure (stable or unstable equilibrium) shall be deter-
mined. The understanding of those responses of the structure is
necessary for design of safe structure [1].
Cylindrical shell structures can fail either by yielding of buck-
ling. The collapse of the structures precipitated by buckling is
often a more serious problem than fracture or yielding. Buck-
ling sometime occurs suddenly without warning causing a cat-
astrophic failure.

Fracture or yielding, on the other hand, can also produce fail-
ure, but the elasticity of the material permits a redistribution of
the stresses often allowing a progressive collapse rather than a
sudden complete collapse characteristic of buckling. Once buck-
ling is initiated within the structure, there is little or no chance of
recovery unless the load is suddenly reduced [2]. In fact, buckling

phenomenon in cylindrical shell occurs when most of the strain
energy which is stored as membrane energy has been converted
to bending energy requiring large deformation resulting to cata-
strophic failure [2]. Hence, the design of thin cylindrical shells
should be based on buckling criteria [3]. Buckling behaviour of
cylindrical shells (in particular, the critical buckling load) is not
accurately predicted by linear elastic equations due to initial im-
perfections of the shell structure under the action of external
loads like uniform bending, uniform axial compression etc. The
buckling effect on the cylindrical shell structures can be resisted
with incorporation of stiffeners in the shell [4].  The circumferen-
tial stiffeners are known as ring while longitudinal stiffeners are
called stringers [5]; [6]. Cylindrical shell with stiffeners is shown
in Fig.1

In this work, the Ritz method which was incorporated with
imperfections in the shell structures was employed in determin-
ing the effectiveness of inclined stiffeners of internally pressur-
ized thin cylindrical shell under uniform bending. This was
achieved by assuming the displacement function of the shell. Its
stress function was obtained from the assumed displacement
function from the compatibility equation which was carried out
by  non  linear  large  deflection  theory.   The  expression  of  the
stored energy in the shell as well as work done by the external
load was obtained using both the stress and displacement func-
tions. The large deflection terms, effect of imperfection in the
strain displacement and the external load were considered in the
formulation of total strain energy of the imperfect shell. The re-
sulted total strain energy was minimized using the Ritz method
to determine the equation for obtaining the buckling stress val-
ues of the shell.
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  (a)

     (b)

Fig 1: Cylindrical shell (a) stiffened with rings and stringers
(b) stiffened with inclined stiffeners

2.0 DERIVATION OF BUCKLING STRESS PARAMETER OF
THIN CYLINDRICAL SHELL UNDER UNIFORM BENDING

The buckling stress parameter was derived thus; the deflection
function  was  assumed  first,  then  the  stress  function  was  ob-
tained from the compatibility equation which was carried out
by the non-linear large deflection theory. The expression for the
stored energy in the shell and stiffeners as well as work done
by the external loads (i.e. uniform bending) was obtained using
the assumed deflection and stress functions. The large deflec-
tion terms, the effect of the imperfection in the strain displace-
ment and strain energy equations of the shell, shell stiffeners
and external loads were considered in the formulation of total
strain energy for each type of the cylindrical shells. The resulted
total strain energy for each type of cylindrical shells was mini-
mized using the Ritz method.
The equation obtained after minimization using the Ritz
method is the governing equation for computing the buckling
stress value of the cylindrical shell.

2.1 2.1 Energy Expression for the cylindrical shell

Fig. 2: Coordinates and Displacement Components of a point
on the Middle- surface of the shell.
Let x and y be the axial and circumferential axis in the median
surface of the undeformed cylindrical shell as shown in Fig. 1,
w is the total radial deflection and w0 represents the initial ra-
dial deflection. From the theory of elasticity, the strain – dis-
placement relations of the cylindrical shell are as expressed in
Eqns. (1a), (1b) and (1c) respectively.
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The stresses and strains in the middle surface of the shell in
the case of plane stress are related to each other by the following
equations.
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Substituting Eqns. (1a), (1b) and (1c) into their related equa-
tions in Eqns. (2a), (2b) and (2c), the followings were obtained;
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For plane stress state, the non-zero components of stress ten-
sor,  , , satisfied the following equilibrium using Airy
stress function F.
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Eliminating variables u and v in Eqns. (3) and (4), the relation
between stress function F and radial component displacement,
w was expressed as follows:

+ = − . + .

−
1

+
1

− (5 )

Where ∇ = + is called Laplace operator.

(∇ ) F = E − . + . −
1

+
1

−      (5 )

For simplicity, w was assumed to be proportional to .
Thus,
Л =                                  (6)

Where Л is called imperfection ratio and it is independent of x
and y.
With the expression from Eqns (5b) and (6), the compatibility
equation was expressed as;

1
1 − Л

∇ F = E(1 + Л) − .

−            (7)

Where ∇ is called Bilharmonic operator.

Equation (7) is the compatibility equation of perfect thin cylin-
drical shell.
The strain energy of isotropic medium referred to arbitrary or-
thogonal coordinates was expressed as:

= ∭ = ∭ + + 2 +

2 + 2 (8a)

Substituting Eqns. 1(a-c), 2(a-c), 3(a-c) and 4 into Eqn. (8a),
we have expressions stated in Eqns. (8) and (9) respectively:

i. The extensional strain energy in the shell. This
was expressed as;

=
ℎ

2
+

+ 2(1 + )

− .             (8)

ii The potential due to the internal pressure, p of the
cylindrical shell

= ( − )                     (9)

iii. The potential due to edge bending of the shell
 As a result of the eccentric loading of the shell, the potential

due to the edge bending of the shell is the product of applied
bending force and the length in the direction of bending. This
expressed as:

=
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− −
1
2

+
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Where = applied peak bending stress
The bending strain energy of stiffeners. Considering Fig. 3,

the stiffeners were assumed parallel with the , coordinates
lines and the principal direction of the cylindrical shell coincide
with x, y, lines.

y2
y1

ɤɤ

x

y

1,491

IJSER



International Journal of Scientific & Engineering Research, Volume 9, Issue 5, May-2018
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

Fig. 3: The coordinate system of the stiffeners of the cylindrical
shells and stiffeners
The subscript k was used for stiffnener, which is inclined at
an angle, ɤ with generator of the cylinders and is parallel with

-line and normal to ʹ '– line. Hence, the bending strain en-
ergy in the  stiffener is

, =
2

−
ʹ

            (11)

Where denotes the number of the stiffeners in ɤ  – direc-
tion. represents the flexural rigidity of the stiffener.
The limit is the length of the stiffener in ɤ – direction.
Similarly, the bending strain energy in the stiffener which
is parallel with – line and nomal to - line as shown in Fig.
2.

, =
2

−            (12)

The subscript j was used for  stiffener which is inclined
at angle of ɤ with the generator of the cylinder. Where is
the number of the stiffeners in ɤ – direction.

represents the flexural rigidity of the stiffeners. The
limit is length of the stiffener in ɤ – direction.
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2
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2
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Where G J represents the torsional rigidity of stiffeners, with
subscript j representing stiffeners in ɤ  - direction and subscript
k is for stiffeners in ɤ - direction. In this analysis, the inclined
angles, ɤ  and ɤ  are considered in axial symmetry for inclined
stiffeners.
The deflection shape of the cylindrical shell under uniform
bending was assumed as:

= + 2 cos +
2
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(15)

Where m and   n are the numbers of waves in axial and circum-
ferential directions respectively. Using compatibility equation
in Eqn (7), the corresponding stress function for cylindrical shell
under uniform bending:
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Where and are  the  average  axial  and  peak  bending
stresses, respectively and are positive for compression.
Substituting Eqn (16) into Eqn (7) and minimizing the resulting
equation, the coefficients , , , , , in Eqn. (16)
were determined in terms of , , and    as  shown  in
Eqns.17(a-f)
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Where

μ =
n
m

, β =
R

m h
,     Ϧ∗ =

ℎ
, = 2,3,4    =

ℎ
̅ is called wavelength ratio in axial and circumferential di-

rection
3.0 Expression of Total Potential for Cylindrical Shell with
inclined stiffeners Subjected to Internal Pressure and uni-
form bending

The total potential of the system, ∏ is the sum of the strain

energy and the potential of the applied loads. Thus,
∏ = + + + + , + , + , + ,    (18)

ɤ ɤ
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3.1 Minimization of Total Potential Energy, ∏ , of Internally

Pressurized Thin Cylindrical Shell Subjected to Bending
The non-dimensional form of the total potential of the sys-
tem is express as shown in Eqn (18b)

∏ = + + + + , + , + , + ,    (18 )

The total potential energy of the internally pressurized cy-
lindrical shell subjected bending must be a minimum when
the structure is in equilibrium. The minimization of the

non-dimensional form of the total energy, ∏ is as expressed

in Eqn (19)
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Evaluation of
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Where = Ϧ∗
= Ϧ∗

Ϧ∗

Eliminating  and Ϧ∗ from Eqns.  (3.64), (3.65), (3.66), the

following equation was obtained.
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And

Φ = σ + 3
2                          (51)

Equation (43) is the governing equation for determining the
critical buckling stress of an internally pressurized thin cy-
lindrical shell reinforced with angular stiffeners and loaded
with eccentric compressive force or bending, where Φ is
called minimum stress parameter for stiffened shell under
bending and internal pressure.

4.0 RESULTS AND DISCUSSIONS
4.1 RESULTS
NUMERICAL EXAMPLES
The numerical analysis of this type of cylindrical shell was done
by taking the following assumptions: ̅ = ̅ , ̅ ̅ =

̅ ̅ , ɤ  =  ɤ = ɤ (  ɤ = 10 , 20 , 30 , 40 , 45 , 50 , 60 ),
= , = 5, ̅ = 1, ℎ = 0.05 , = 2 =

2 . Using the governing equation in Eqn (43) and the no-
tation described from Eqn (44) to Eqn (50), the following data
shown in Table 1 and the corresponding graph in Fig. 4 were
respectively obtained for different imperfect ratio, Л.

Table 1: Values of Buckling Stress Parameter,  for different imperfect ratio for internally pressurized thin cylinders reinforced with inclined stiffeners

subjected to uniform bending

IMPERFECT

RATIO, Л

BUCKLING STRESS PARAMETER,   OF STIFFENERS AT DIFFERENT ANGLES

10 20 30 40 45 50 60

0.1 7.6307 4.6271 1.4266 0.4038 0.3430 0.4785 1.2589

0.2 8.1084 5.3111 1.6910 0.4387 0.3665 0.5358 1.5150

0.3 8.4625 5.9047 1.9723 0.4819 0.3913 0.5865 1.7508

0.4 8.6674 6.3654 2.2466 0.5316 0.4167 0.6268 1.9430
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0.5 8.6951 6.6554 2.4860 0.5863 0.4425 0.6552 2.0576

0.6 8.5097 6.7345 2.6572 0.6422 0.4684 0.6573 2.0488

0.7 8.0586 6.5516 2.7201 0.7031 0.4943 0.6360 1.8640

0.8 7.2535 6.0284 2.6262 0.7602 0.5202 0.5811 1.4580

0.9 5.9127 5.0181 2.3144 0.8118 0.5461 0.4846 0.8131

Fig. 4: Graph of Buckling Stress Parameter and Imperfect Ratio of Internally Pressurized Thin Cylinders under uniform bending

4.2 DISCUSSION OF RESULTS
The data in Fig. 4 showed that as imperfect ratio of stiffeners
inclined at 100 and 600 respectively increases from 0.1 to 0.5, its
buckling stress parameter increases. For stiffeners inclined at
200 and 500 respectively, there was progressive increase of their
buckling stress parameter from imperfect ratio of 0.1 to imper-
fect ratio of 0.6. While, stiffeners inclined at 300 have progres-
sive increase of their buckling stress parameter from imperfect
ratio of 0.1 to imperfect ratio of 0.7.
However, stiffeners inclined at 400 and 450 respectively have
progressive increase of their buckling stress parameter from im-
perfect ratio of 0.1 to imperfect ratio of 0.9.  Buckling stress pa-
rameter is least at 450 inclined stiffeners and maximum at 100

inclined stiffeners for all imperfect ratios considered. The re-
sults in Table 1 and Fig.4 also showed that 100 inclined stiffeners
is the most effective stiffener with maximum critical buckling
stress at imperfect ratio of 0.5, while 450 inclined stiffeners is the
least effective with the least critical buckling stress at imperfect
ratio of 0.1

5.0 CONCLUSION
With reference to the results obtained in this research, engineers
designing cylindrical shell structures with the aim of providing
resistance to buckling would be able to select suitable inclined
stiffeners for the structure under uniform bending.
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DEFINITION OF NOTATIONS
Notations Meaning

∈ , ∈ Strains in x and y

Initial deflection
Total radial deflection

E Young’s modulus of elasticity of the shell
Flexural rigidity of the shell

ℎ Thickness of the shell
Poisson ratio

Л Imperfect ratio
Radius of the cylindrical shell

F Airy’s stress function
Young’s modulus of elasticity of  jth stiffeners

Young’s modulus of elasticity of  kth stiffeners
Shear modulus of kth stiffeners
Shear modulus of jth stiffeners

moment of inertia of  jth  stiffeners

moment of inertia of  kth  stiffeners
polar moment of inertia of  kth  stiffeners
polar moment of inertia of  jth  stiffeners

Length of the cylindrical shell

Length of  kth stiffeners
Length of  jth stiffeners

Dimensionless length of  jth stiffeners

Dimensionless length of  kth stiffeners
Dimensionless Young’s modulus of elasticity of  kth stiff-
eners
Dimensionless Young’s modulus of elasticity of  jth stiff-
eners

̅ Dimensionless shear modulus of jth stiffeners
̅ Dimensionless shear modulus of kth stiffeners
̅ Dimensionless moment of inertia of  jth  stiffeners
̅ Dimensionless moment of inertia of  kth  stiffeners
̅ Dimensionless polar moment of inertia of  jth  stiffeners
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̅ Dimensionless polar moment of inertia of  kth  stiffeners
Number of waves in axial direction
Number  of waves in circumferential direction

ɤ Inclination angle of the Kth stiffeners parallel with y1-
line  and normal to y2

1-line

ɤ Inclination angle of the jth stiffeners parallel with y2- line
and normal to y1

1-line

, Torsional  strain energy for jth stiffeners inclined at an-
gle, ɤ

, Torsional  strain energy for Kth stiffeners inclined at an-
gle, ɤ

, Bending strain energy for jth stiffeners inclined at angle,
ɤ

, Bending strain energy for Kth stiffeners inclined at angle,
ɤ
Bending strain energy in the shell
Extensional strain energy in the shell
Strain energy due to internal pressure
Potential due to edge bending due to application of ec-
centric loading
Bending stress

∇ Biharmonic operator
∇ Laplace operator

Internal pressure
̅ Wavelength ratio

Dimensionless internal pressure
, , Components of displacements in x, y, z directions
, , Orthogonal coordinates on median  surface of the shell

Dimensionless parameter that connect h, R and m
u, v, w Components of displacements in x, y, z directions
x, y, z Orthogonal coordinates on median  surface of the shell

Dimensionless parameter that connect h, R and m
C Cosine of angle ɤ
S Sine of angle ɤ
C cosine of angle ɤ
S Sine of angle ɤ
, Deflection parameters

Number of stiffeners in ɤ  -direction

∏
∏
U

Number of stiffeners in ɤ  –direction
Total strain energies

Non-dimensional total strain energies
Non-dimensional strain energy
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